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Abstract. The problem of the lattice diffusion of two particles coupled by a contact-repulsive
interaction is solved by finding analytical expressions of the two-body probability characteristic
function. The interaction induces anomalous drift with a vanishing velocity, the average coordinate
of each particle growing at large times ast1/2. The leading term of the mean-square dispersions
displays normal diffusion, with a diffusion constant made smaller by the interaction by the non-
trivial factor 1− 1/π . The space continuous limit taken from the lattice calculations allows
one to establish connection with the standard problem of diffusion of a single fictitious particle
constrained by a totally reflecting wall. Comparison between lattice and continuous results display
marked differences for transient regimes, relevant with regards to high time resolution experiments,
and in addition show that, due to slowly decreasing subdominant terms, lattice effects persist even
at very large times.

1. Introduction

Whereas classical ordinary diffusion of a single particle is universally known, diffusion of
interactingparticles does not seem to have drawn much attention. A notable exception is the
seminal paper by Fisher (1984), which introduces basic ideas and solves, in various cases,
the problem of finding the probability for the reunion of a given number of ‘drunken walkers’
wandering on a one-dimensional (1D) lattice. The so-called tracer problem also received some
attention, following the solution given by Harris (1965) for the 1D case (a recent bibliography
on this subject can be found in Mallick’ thesis (Mallick 1996). More recently, intensive work
(Derrida and Mallick 1997, Sasamoto and Wadati 1998 and references therein) has been done
on the asymmetric simple exclusion process (Liggett 1985) which describes the biased motion
of a lattice gas with hard-core interaction.

The interaction between diffusing particles appears to be relevant in many fields: 1D
hopping conductivity (Richards 1977), ion transport in biological membranes (Nener 1992,
Sackman 1992), channelling in zeolithes (Kuklaet al 1996). Generally speaking, the
interactions are expected to play a dominant role in low-dimensionality systems and/or sytems
with geometrical constraints. Such problems have been analysed in the continuous space limit
of the so-called single-file model (Rödenbecket al 1998, Aslangul 1998).

Here I consider one of the simplest problems, namely that of two diffusing particles on a
1D lattice with a repulsive contact interaction, by directly solving the lattice master equation
using elementary methods and obtaining the exact two-body probability at all times; this allows
one to find the behaviour,∀t , of the mean-square dispersion of the coordinates. The totally
asymmetric version of this problem (directed random walk in which each particle can move
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only in one direction) was treated by Sasamoto and Wadati (1998) using a Bethe ansatz; among
other results, these authors gave explicit asymptotic behaviour of the two first moments of the
coordinates in the case of two diffusing particles.

The continuous space limit of the model considered here is simply related to the problem
of a single fictitious particle subjected to a perfectly reflecting barrier, as shown below. On
the other hand, working on a lattice seems to usually be the most natural approach on physical
grounds and is even a necessity when no continuous limit exists; an example of such a situation
is the pure growth problem, equivalent to a directed walk, for which the continuous limit of
the master equation generates a purely mechanical Liouville equation, in which diffusive
effects have disappeared (Gardiner 1990). When the continuous limit exists it is expected,
on physical grounds, that both versions provide essentially the same results in the long-time
limit, when part of the microscopic details become irrelevant. Nevertheless, although leading
terms are expected to coincide, subdominant corrections may play a rather important role, as
shown below, since they usually follow power laws in time with small exponents entailing that
corrections are long-lived. When the relevant experimental timescale is short, results obtained
by scaling hand-waving asymptotic arguments are of little physical interest and continuous
models may even display serious shortcomings: as an example, as shown below, the velocity
at short times turns out to be infinite in the continuous approximation whereas its lattice
analogue is perfectly well defined and is finite. In addition, somewhat surprisingly, lattice
effects persist even in the final regime, in contrast to the ordinary diffusion of a single particle.
This is why, as a whole, lattice models in continuous time are worthy of investigation: the
discreteness of space, appearent in the transient as well as in the long-time dynamics, is not a
minor feature of the problem. To be sure, lattice problems are by nature less ‘universal’ than
continuous ones in the sense that most results obtained in such a framework usually depend on
microscopic details such as the lattice structure (Montroll and West 1979); nevertheless, they
usually contain much more physically relevant information than continuous ones and, due to
their specific behaviours in time, can suggest new experiments highly resolved in time.

2. The model

The basic assumptions of the present lattice model are as follows: (i) at some time (t = 0),
a pair of particles is located on two given adjacent lattice sites labelledn = 0 and 1. (ii)
when separated by more that one lattice spacing, each member of the pair has a symmetric
diffusive motion, independent of the other; for simplicity, it is assumed that hopping can occur
between one site and its nearest neighbours. The hopping probability per unit time is denoted
asW and allows one to define a diffusion constantD = a2W , a being the lattice spacing and
W−1 the diffusion time. (iii) When the two particles are located on two adjacent sites, each
of them can only move onto the empty available site: this models the contact interaction. As
a consequence, the two particles cannot stand on the same site and cannot cross each other.
Any initial condition thus definitely induces a left–right symmetry breaking. Conventionally,
with the above initial condition, the particle located atn = 0 (resp.n = 1) at timet = 0 will
be given the label 1 (resp. 2).

With these assumptions, the master equation (ME) for the probabilitypn,m(t) to find the
two particles located on sitesn andm at timet can be written following the standard procedure.
One first considers the evolution ofpn,m(t) betweent andt +1t , where1t is a finite time
interval, by exhausting all basic elementary jumps and expressing their probabilities in terms
of the productsW1t ; by forming the differencepn,m(t +1t)−pn,m(t), by dividing both sides
by1t and taking the limit1t → 0, one eventually obtains the time-continuous ME as follows
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(δn,m is the Kronecker symbol):

d

dt
pn,m = −2W [2− (δn,m+1 + δn,m−1)](1− δn,m)pn,m

+W(pn+1,m + pn,m−1)(1− δn,m−1)(1− δn,m)
+W(pn−1,m + pn,m+1)(1− δn,m+1)(1− δn,m). (2.1)

In such a way, as usual, all elementary steps involving two or more steps disappear (their
probabilities scale as(1t)k with k > 2). The(1−δnm) factors account for the fact that the two
particles cannot stand on the same site: whenpnn(0) = 0—which is the case for the chosen
initial condition—thenpnn(t) remains equal to zero at all times.

Our aim is to solve equation (2.1) in order to deduce the full probability distribution
{pn,m(t)} and the related one-body (marginal, reduced) distributions{pn(1, t)} and{pm(2, t)}
given by

pn(1, t) =
+∞∑

m=−∞
pn,m(t) pm(2, t) =

+∞∑
n=−∞

pn,m(t). (2.2)

Equation (2.1) can be solved by first introducing the generating (characteristic) function
f (φ,ψ, t) defined as

f (φ,ψ, t) =
+∞∑

n,m=−∞
pn,m(t)e

inφeimψ (2.3)

allowing one to find eachpn,m by inverse Fourier transformation or to get the marginal
distributions by setting one of the argumentsφ or ψ equal to zero, and to find directly all
the moments by successive derivations. It is readily seen that the characteristic functionf

satisfies the following homogeneous integro-differential equation:

∂

∂t
f (φ,ψ, t) = −2W(2− cosφ − cosψ)f (φ,ψ, t)

+2W
∫ 2π

0

dφ′

2π
[2− cosφ′ − cos(φ +ψ − φ′)]f (φ′, φ +ψ − φ′, t)

+2W
∫ 2π

0

dφ′

2π
[2− cos(φ − φ′)− cosφ − cosψ ]f (φ′, φ +ψ − φ′, t). (2.4)

The above-stated initial condition givesf (φ,ψ, t = 0) = eiψ and entails thatpn,m(t) = 0 for
n > m. By subsequently making a Laplace transformation

fL(φ, ψ, z) =
∫ +∞

0
dt e−ztf (φ, ψ, t) (2.5)

it is found that the functionfL obeys the following homogeneous integral equation:

zfL(φ, ψ, z)− eiψ = −2W(2− cosφ − cosψ)fL(φ, ψ, z)

+2W(2− cosφ − cosψ)
∫ 2π

0

dφ′

2π
fL(φ

′, φ +ψ − φ′, z)

+4W

(
sinφ − sin

φ +ψ

2
cos

φ +ψ

2

)∫ 2π

0

dφ′

2π
sinφ′fL(φ

′, φ +ψ − φ′, z)

+4W

(
cosφ − cos2

φ +ψ

2

)∫ 2π

0

dφ′

2π
cosφ′fL(φ

′, φ +ψ − φ′, z). (2.6)
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This is a Fredholm equation with a degenerate kernel; as such, its solution is a linear
combination of the three auxiliary quantitiesM(θ), X(θ) andY (θ) (θ = φ + ψ) defined
as

M(θ) =
∫ 2π

0

dφ′

2π
fL(φ

′, φ +ψ − φ′, z)

X(θ) =
∫ 2π

0

dφ′

2π
cosφ′fL(φ

′, φ +ψ − φ′, z)

Y (θ) =
∫ 2π

0

dφ′

2π
sinφ′fL(φ

′, φ +ψ − φ′, z)

(2.7)

M, X andY satisfy an inhomogeneous system which can be written down after a somewhat
lengthy but straightforward calculation:

(1− c11)M − c12X − c13Y = c10

−c21M + (1− c22)X − c23Y = c20

−c31M − c32X + (1− c33)Y = c30

(2.8)

where the various coefficients are equal to:

c10 = eiθ/2e−u

4W cos(θ/2) sinhu
c20 = eiθ + e−2u

8W | cos(θ/2)| sinhu

c30 = eiθ − e−2u

8iW | cos(θ/2)| sinhu
c11 = 1− e−u| cos(θ/2)|

| cos(θ/2)| sinhu

c12 = e−u − | cos(θ/2)|
sinhu

c13 = tan(θ/2)

sinhu
(e−u − | cos(θ/2)|)

c21 = e−u

sinhu
(1− coshu| cos(θ/2)|)

c22 = e−u
sinhu + cos2(θ/2)(e−u − | cos(θ/2)|)

| cos(θ/2)| sinhu

c23 = c32 = e−u sin(θ/2)

2 sinhu| cos(θ/2)| (e
−u − | cos(θ/2)|)

c31 = e−u tan(θ/2)

sinhu
(1− coshu| cos(θ/2)

c33 = e−u
sinhu + sin2(θ/2)(e−u − | cos(θ/2)|)

| cos(θ/2)| sinhu
.

(2.9)

In these equations, the quantityu is defined as follows:

coshu = z + 4W

4W | cos(θ/2)| . (2.10)

u is a function ofz andθ , uniquely defined by continuity from the branch assuming real positive
values whenz is a real positive number.

The solution of the above system allows us eventually to write down the Laplace transform
of the generating function (2.5) as the following (Z = z/4W ):

fL(φ, ψ, z) = 1

4W

eiψ | cosφ+ψ
2 |

Z + 1− 1
2(cosφ + cosψ)

R(φ +ψ,Z)ei(φ−ψ)/2 − | cosφ+ψ
2 |

R(φ +ψ,Z)− cos2 φ+ψ
2

(2.11)

where

R(θ, Z) = Z + 1− [(Z + 1)2 − cos2(θ/2)]1/2. (2.12)

This is a first expression of the full solution of the present problem, since it allows one to
find all the moments of the two-body distribution{pn,m(t)} in their Laplace representation.
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In addition, Laplace inversion of equation (2.11) gives the characteristic function in the time
domain:

f (φ,ψ, t) = eiψ β(1− α)ei(φ−ψ)/2 + β2 − α
β2 − 2α + 1

e4(α−1)Wt

+eiψ(1− βei(φ−ψ)/2)P
∫ +β

−β

dx

π

e4Wt(x−1)

x − α
(β2 − x2)1/2

β2 − 2x + 1
. (2.13)

In equation (2.13),P denotes the Cauchy principal part and

α = cos
φ +ψ

2
cos

φ − ψ
2

β =
∣∣∣∣cos

φ +ψ

2

∣∣∣∣ . (2.14)

Moreover, by settingψ = 0 (respφ = 0) in equation (2.11) one readily obtains the Laplace
transform of the characteristic function for the reduced (marginal) one-body distribution for the
particle labelled 1 (resp. 2):f1,L(φ, z) (resp.f2,L(ψ, z)); their expressions for−π 6 φ 6 +π
are

f1,L(φ, z) = 1

4W

cosφ2
Z + sin2 φ

2

R(φ,Z)eiφ/2 − cosφ2
R(φ,Z)− cos2 φ

2

(2.15)

f2,L(ψ, z) == eiψ [f1,L(ψ, z)]
∗. (2.16)

The complex conjugation expresses the bias induced by the initial condition and simply means
that the particle 1 tends, on the average, to move in one direction and the particle 2 in the
opposite one. A first derivation atφ = 0 of (2.15) gives the Laplace transform of the averaged
coordinate of the particle 1, when the other can be found anywhere else:

x1,1(z) = a

4z

[
1−

(
1 +

8W

z

)1/2
]
. (2.17)

A second derivation gives the second moment:

x1,2(z) = a2

4z

(
1 +

8W

z

)1/2
[(

1 +
8W

z

)1/2

− 1

]
. (2.18)

Inverse Laplace transformation now yields the exact expressions of the two first moments for
the ‘left’ particle (the one labelled 1):

〈x1〉(t) = a

4
{1− e−T [(1 + 2T )I0(T ) + 2T I1(T )]} (2.19)

〈x2〉(t) = a − 〈x1〉(t) (2.20)

〈x2
1〉(t) =

a2

2
T +

a2

4
{1− e−T [(1 + 2T )I0(T ) + 2T I1(T )]}. (2.21)

In these equations,T is the dimensionless timeT = 4Wt , whereas theI denote the modified
Bessel functions. The two mean-square dispersions coincide and can be written in the
symmetric form:

1x2
1(t) = 1x2

2(t) = 2a2Wt + 〈x1〉(t)〈x2〉(t). (2.22)

The result is that the mean distance between the two particles, d(t) = a−2〈x1〉(t), is given by

d(t) = a

2
{1 + e−T [(1 + 2T )I0(T ) + 2T I1(T )]}. (2.23)

At large times (Wt � 1), the preceding expressions have the following expansions:

〈x1〉(t) = −a
(

2

π
Wt

)1/2

+
a

4
+ · · · (2.24)

1x2
1(t) = 1x2

2(t) = 2a2

(
1− 1

π

)
Wt − a2

(
Wt

2π

)1/2

+
3a2

16
+ · · · . (2.25)
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Figure 1. Comparison of the two first moments for the reduced one-body probability (left particle)
in the lattice (solid curves, equations (2.19), (2.21) and (2.22)) and continuous framework (dashed
curves, equations (3.10) and (3.12)).

Equation (2.24) shows that, due to repeated collisions with the other particle, the average
position of one particle eventually goes to infinity, although quite slowly (∼t1/2)—and so does
the average distance d(t): the repulsion induces an effective drift, characterized by a vanishing
velocity at large times. Equation (2.25) displays the fact that the diffusion constant of each
particle is reduced by the factor (1− 1/π ): the repulsive interaction partially inhibits the
spreading, all the more since the first correction to the linear term is negative.

In contrast, for short times,t � W−1, one has

〈x1〉(t) ' −aWt 〈x2〉(t) ' a(1 +Wt) (2.26)

1x2
1(t) = 1x2

2(t) ' a2Wt. (2.27)

Thus, at short times, the repulsion induces a normal drift with a finite velocityaW , whereas
the diffusion constant is simply halved as compared with its value in the absence of interaction,
since then each particle can essentially diffuse in half-space only, as in a directed walk. The
two first moments in the lattice model are plotted in figure 1 (solid curves) for the ‘left’ particle,
using the exact expressions (2.19), (2.21) and (2.22).

The above results can be compared with those given by Sasamoto and Waditi (1998) for the
simplified version of the model in which each particle can move in one direction only (directed
random walk). In such a case, each particle obviously has a finite velocity, as opposed to
the present model where jumps can occur in both directions: the contact interaction induces
for each particle a fluctuating boundary condition which gives rise to anomalous drift, the
average coordinate increasing at all times ast1/2. More direct comparison can be performed
by considering the mean-square dispersion. The quantities〈X〉 and〈X2〉 introduced by these
authors (their equation (4.11)) are related to the above moments and are such that

〈X2〉 − 〈X〉2 = 1

2
(1x2

1 +1x2
2) +

a2

4
. (2.28)

From (2.25), it is seen that, at large times and for the present model

〈X2〉 − 〈X〉2 ' 2a2

(
1− 1

π

)
Wt (2.29)
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whereas the result of these authors for the directed walk is

〈X2〉 − 〈X〉2 ' 2a2

(
3

2
− 1

π

)
Wt. (2.30)

This shows that, as compared with the case without interaction, the diffusion coefficient is
enhanced for the directed walk analysed by Sasamoto and Waditi (1998) whereas it is reduced
for the both-way usual random walk model.

3. The continuum limit

The continuous space limit is worthy of analysis, although it cannot provide, by nature, the
whole information contained in the lattice version and fails to represent transient regimes; the
continuous space limit defines an oversimplified framework and can only claim to describe
features on large space- and timescales. More precisely, ifa is the order of magnitude of the
underlying lattice and ifτdiff denotes the diffusion time, wavevectorsk and time-conjugate
Laplace variablesz are physically sensible only if they satisfyk � a−1 and|z| � τ−1

diff .
Generally speaking, the transition to continuous isotropic space is achieved from the

square lattice framework by settingW = D/a2 and by formally taking the limita → 0. Let
us setφ = k1a, ψ = k2a; when the latter limit is taken, equation (2.13) generates the Laplace
transform of the characteristic function of the two-particle density,f̃L(k1, k2, z):

f̃L(k1, k2, z) = 1

[z + (D/2)(k1 + k2)2]1/2

1

[z + (D/2)(k1 + k2)2]1/2 + i
√
D/2(k1− k2)

. (3.1)

This expression is much simpler than its analogous of the discrete version (cf equation (2.13)).
It can be re-expressed in terms of the total (centre-of-mass momentum)K = k1 + k2 and the
relative (reduced) momentumk = (k1− k2)/2:

f̃L(k1, k2, z) = 1

[z + (D/2)K2]1/2

1

[z + (D/2)K2]1/2 + i
√

2Dk
(3.2)

displaying the fact that the diffusion constant for the centre-of-mass motion isD/2, whereas
the relative motion has a doubled diffusion constant 2D (indeedD plays the same role of an
inverse mass in the reduction of a dynamical two-body problem). By now using the Efrös
theorem (Lavrentiev and Chabat 1972), one easily obtains:

f̃ (k1, k2, t) = e−DK
2t/2

∫ +∞

0

dτ√
πτ

e−τ
2/(4t)e−i

√
2Dkτ (3.3)

and Fourier inversion eventually yields the full two-body density probabilityP(x1, x2, t):

P(x1, x2, t) = 2(x2 − x1)
1

2πDt
exp

[
−x

2
1 + x2

2

4Dt

]
(3.4)

where2(x) is the Heaviside unit-step function. This expression, obtained as the continuum
limit of expression (2.13) is self-evident: provided that the inequalityx1 < x2 is satisfied,
each particle has a free diffusion, independent of the other. Obviously, due to the (repulsive)
interaction,P(x1, x2, t) is not the product of two functions, one for each particle. Indeed,
P(x1, x2, t) is an integral of such products:

P(x1, x2, t) = lim
ε→0

1

2iπ2Dt

∫ +∞

−∞
dq

eiq(x2−x1)

q − iε
e−(x

2
1+x2

2)/(4Dt) (3.5)

exhibiting the obvious fact that the two particles are correlated at all times.
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Figure 2. Reduced one-body density for the left particle in the continuous aproximation (see
(3.7)). The diffusion constantD is taken as unity and each curve is labelled by the value of time;
the asymmetry is less and less pronounced as time increases.

The interparticle correlations are most simply expressed by the correlatorC(t), which is
readily calculated from equation (3.4):

C(t) = 〈(x1− 〈x1〉)(x2 − 〈x2〉)〉 = 〈x1〉2 = 2

π
Dt (3.6)

showing that the normalized correlatorC(t)/〈xi〉2 is constant in time: the correlations induced
by the interaction never die out in one dimension.

From equation (3.4), the marginal probabilities in space-time for one particle, obviously
asymmetric, are found to be:

P1,2(x, t) =
∫ +∞

−∞
dx ′P(x, x ′, t) = e−x

2/(4Dt)

√
4πDt

[
1±8

(
x/
√

4Dt
)]

(3.7)

where the + (resp.−) sign refers to the right (resp. left) particle and where8 denotes the
probability integral (Gradshteyn and Ryzhik 1980). The left particle marginal density is plotted
in figure 2. Settingk2 = 0 (resp.k1 = 0) in equation (3.3) yields the characteristic functions
of the marginal densities:

f̃1(q, t) = e−Dq
2t/2

∫ +∞

0

dτ√
πτ

e−τ
2/(4t)e−i

√
D/2qτ (3.8)

f̃2(q, t) = [f̃1(q, t)]
∗. (3.9)

These functions give all the moments by successive derivations atq = 0; thus, at all times:

〈x1〉(t) = −〈x2〉(t) = −
√

2

π
Dt (3.10)

〈x2
1〉(t) = 〈x2

2〉(t) = 2Dt (3.11)

1x2
1(t) = 1x2

2(t) = 2

(
1− 1

π

)
Dt. (3.12)
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Figure 3. Comparison at short times of the two first moments for the reduced one-body probability
(left particle) in the lattice (solid lines), and in the continuous framework (dashed lines).

These expressions themselves reveal the simplifications carried out by the continuous
approximation (cf (2.19), (2.21) and (2.22)); they also display the expected fact that the exact
results at all times of the continuous version coincide with the leading asymptotic terms of the
lattice version (see (2.24) and (2.25)); indeed, once the dimensionless timeT = 4Wt in (2.19)
and (2.21) is replaced by 4D/a2, the limita→ 0 automatically picks out the first leading term
in the asymptotic expansion of the Bessel functions. Note, however, that lattice effects persist
even at very large times: plots given in figure 1 allow comparison between the lattice results
(solid curves) and the continuous ones (dashed curves). For the mean-square dispersion, the
relative ‘error’ decreases slowly as(Wt)−1/2: it still amounts to 10% forWt = 100. The
lattice effects indeed go to zero at infinite times, but in such a slow manner that subdominant
terms cannot be neglected on reasonably large times.

In contrast, with no surprise, the behaviours at short times are markedly different (see
(2.26) and figure 3); for instance, the finite initial drift velocity in the lattice model (see (2.26),
which could be observed with high time resolution experiments, is infinite in the continuous
approximation (equation (3.10)).

Note that the distribution function for the left particle (3.7) satisfies the conservation
equation:

∂P1(x, t)

∂t
= −∂J (x, t)

∂x
(3.13)

with

J (x, t) = −D
[
∂P1(x, t)

∂x
+ 2G2

D(x, t)

]
(3.14)

whereGD denotes the normal density with a diffusion constantD. The additional term to the
current is negative for allx, as it must clearly be.

Obviously enough, the results of the continuum approximation are related to the simpler
problem of a single fictitious Brownian particle in the presence of a perfectly reflecting wall.
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For the two particles 1 and 2, the diffusion equation is

∂

∂t
P (x1, x2, t) = D

(
∂2

∂x2
1

+
∂

∂x2
2

)
P(x1, x2, t) ∀x1 6= x2 (3.15)

the solution here satisfying the initial and boundary conditionsP(x1, x2, t = 0) = δ(x1 +
0)δ(x2−0),P(x1, x2, t) = 0∀x1 > x2. An easy way to solve such an equation is to transform
to the centre-of-mass frame by settingx = x2−x1,X = 1

2(x1+x2),P(x1, x2, t) = 5(x,X, t);
indeed, the diffusion constantD plays the same role as an inverse mass in a mechanical two-
body problem. This allows us to rewrite the diffusion equation (3.15) as

∂

∂t
5(x,X, t) =

(
D

2

∂2

∂X2
+ 2D

∂

∂x2

)
5(x,X, t) ∀x 6= 0 (3.16)

with 5(x,X, t) = 0,∀x < 0,∀X ∈ R.
Equation (3.16) displays the diffusion of the centre-of-mass (with a constantD/2),

decoupled from the diffusion of the relative coordinate (with a constant 2D) in the presence
of a perfectly reflecting barrier at the origin. This means that the problem can be solved in
two steps, by considering first the diffusive motion of a single fictitious particle with a doubled
diffusion constant and by subsequently adding the effect of the centre-of-mass motion. As a
whole, the solution of the present problem in its continuous version is given by:

P(x1, x2, t) = GD/2(X = 1
2(x1 + x2), t)P2D(x = x1− x2, t) (3.17)

whereGD/2 is the normalized Gaussian function describing the free diffusive motion of the
centre-of-mass with the diffusion constantD/2, whereasP2D is the solution for the single
particle (fictitious) constrained by the reflecting wall. As is well known (Gardiner 1990), if
the fictitious particle stands atx = x0 > 0 with probability one att = 0, one has

P2D(x, t) = 2(x)
∫ +∞

0

2

π
dk coskx0 coskxe−2Dk2t . (3.18)

By takingx0 = 0+, by using (3.17) and by performing all the integrations, one recovers the
expression given in (3.4), directly obtained as the limit taken from the lattice version.

Note, however, that the present problem cannot be considered as a single-particle one: the
separation of the centre-of-mass motion is trivial in the sense that it happens as the consequence
of discrete space homogeneity, but this centre-of-mass, itself having a diffusive motion (not a
purely kinematical one), does participate to the spreading in such a way that correlations are
always present; this is the reason whyP(x1, x2, t) does not factor out (see (3.4) and (3.5)) and
sustains never-ending correlations, as simply expressed by (3.6). On a deeper level, it is seen
that the stochastic motion of each particle is no more Markoffian: the Fourier transforms (3.8),
(3.9) are not of the form e−A|q|

α

and do not satisfy the Bachelier–Smoluchovski–Chapman–
Kolmogorov chain equation. The presence of one particle thus strongly alters the nature of the
motion of the other.

4. Conclusions

The simple problem of two particles diffusing on a lattice with contact-repulsive interaction was
fully solved at all times by finding the two-particle characteristic function, from which marginal
one-particle densities and moments can be easily derived. At short times, the repulsion induces
a linear increase of the position for each particle, associated to a finite velocity, and a linear
variation of the second cumulant, with a diffusion constant which is halved for obvious physical
reasons. In the final regime, each particle still has an effective anomalous drift, its coordinate
growing like t1/2, associated to a vanishing velocity. On the other hand, the mean-square
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dispersion asymptotically follows a normal diffusion law; nevertheless, by comparison with
its value in the absence of interaction, the diffusion constant is reduced by the non-trivial factor
1−1/π . As a whole, there is a crossover between two normal diffusion regimes, the diffusion
constant varying fromD/2 at short times to(1− 1/π)D at large times. Independently of the
long-lived subdominant terms, it is seen that each particle does not recover its ‘free’ diffusion
constant, even at infinite times. For sure, this is a low-dimensionality effect.

Taking the limit of continuous space first allows one to make explicit connection with
the problem of a fictitious particle in the presence of a totally reflecting barrier. Second, by
analysing this limit, it can be seen that marked differences exist between the lattice and the
continuous versions. With no surprise, behaviours at short times are very different (the initial
drift is finite in the lattice, infinite in the continuum). In addition, due to weakly decreasing
subdominant terms, behaviours still substantially differ in both frameworks, even at large times:
it can be said that lattice effects persist for physically relevant times, formally vanishing only
at infinite times. Thus, when it is a given physical feature, the discreteness of space cannot be
ignored.
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